德国亨士乐旋转变压器简称“旋变”,是目前国内比较专业的一个名称。旋转变压器主要用于运动伺服控制系统中,作为角度位置的传感和测量用。早期的旋转变压器用于计算解析装置中,作为模拟计算机中的主要组成部分之一。其输出,是随转子转角作某种函数变化的电气信号,通常是正弦、余弦、线性等。这些函数是常见的,也是容易实现的。在对绕组做专门设计时,也可产生某些特殊函数的电气输出。但这样的函数只用于特殊的场合,并不是通用的。 与编码器类似,旋转变压器也是将机械运动转化为电子信号的转动式机电装置。但与编码器不同的是,旋转变压器传输的是模拟信号而非数字信号。结构方面,旋转变压器由1个一次绕组和2个相位在机械上成90°的二次绕组组成,旋转变压器的输出信号需要控制器能够转换模拟信号的信号输入电路。 亨士乐旋转变压器的参数之一为磁极数。单转速旋转变压器的输出。磁极数等于旋转变压器转动一圈的已调幅正弦周期数。多级旋转变压器是通过在转子和定子中相等地增加磁极数来实现的。大转速受旋转变压器的尺寸影响,一般用来提高精度。而一个单转速旋转变压器本质上是一个低精度的单圈式装置。随着转速输出的增加,旋转变压器也会失去位置信息。如果空间允许,在一个多转速旋转变压器上再加一个单转速旋转变压器可既可提高精度,又可获得位置输出。 由于具有和电机相似的结构(绕组、叠片、轴承和支架),旋转变压器可用于超重载应用。因为不带电路硬件,它能够在更加的温度下运行。因为不带光学元件以及不需精密对准,它能耐受更多的冲击和振动。因为不带光学元件和电路硬件,它能够用于高辐射环境。旋转变压器已经过时间的考验,但是模拟信号输出限制了其使用范围。旋转变压器常见用于交流永磁无刷伺服电机、军事、航空航天应用。 德国亨士乐旋转变压器的结构和两相绕线式异步电机的结构相似,可分为定子和转子两大部分。定子和转子的铁心由铁镍软磁合金或硅钢薄板冲成的槽状心片叠成。它们的绕组分别嵌入各自的槽状铁心内。定子绕组通过固定在壳体上的接线柱直接引出。转子绕组有两种不同的引出方式。根据转子绕组两种不同的引出方式,旋转变压器分为有刷式和无刷式两种结构形式。 无刷式旋转变压器。它分为两大部分,即旋转变压器本体和附加变压器。附加变压器的原、副边铁心及其线圈均成环形,分别固定于转子轴和壳体上,径向留有一定的间隙。旋转变压器本体的转子绕组与附加变压器原边线圈连在一起,在附加变压器原边线圈中的电信号,即转子绕组中的电信号,通过电磁耦合,经附加变压器副边线圈间接地送出去。这种结构避免了电刷与滑环之间的不良接触造成的影响,提高了旋转变压器的可靠性及使用寿命,但其体积、质量、成本均有所增加。 常见的旋转变压器一般有两极绕组和四极绕组两种结构形式。两极绕组旋转变压器的定子和转子各有一对磁极,四极绕组则有两对磁极,主要用于高精度的检测系统。除此之外,还有多极式旋转变压器,用于高精度式检测系统。 分类 按输出电压与转子转角间的函数关系,主要分三大类旋转变 压器: 1.正--余弦旋转变压器----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2.线性旋转变压器----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种。 3.比例式旋转变压器----其输出电压与转角成比例关系。 多极型旋转变压器与多极型自整角机相似,其主要差别仅在于绕组的相数。多极式产品精度比两极式要高一个数量级以上。 双通道旋转变压器是将两个极对数不等的旋转变压器合在一起。通常极对数少的称为粗机,而极对数多的称为精机。其结构有共磁路和分磁路两种形式。后者是将粗机、精机用机械组合成一体,各自绕组有单独的铁心,磁路分开。前者是粗机、精机绕组同时嵌入铁心中,绕组彼此独立,磁路共用。 上述两个旋转变压器组成为电气变速的双通道旋转变压器系统。它不同于两个相同且独立的旋转变压器和减速器组成机械变速的双通道旋转变压器系统。因同步随动系统中采用机械变速的双通道系统满足不了要求,须采用电气变速双通道系统,这种系统不仅把精度提高到秒极,而且结构简单、可靠。 |