
手机号码:19121166298
地 址:上海市北京东路668号科技京城东楼27楼C1室
*pilz皮尔兹开关电源工作中的用途与类型
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展*的一种电源方式。
开关电源主要用途
开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。
开关电源主要类型
现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。
这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与转换器的分类是基本相同的,转换器的分类基本上就是直流开关电源的分类。
直流转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式转换器;另一类是没有隔离的称为非隔离式转换器。
隔离式转换器也可以按有源功率器件的个数来分类。单管的转换器有正激式和反激式两种。双管转换器有双管正激式,双管反激式推挽式和半桥式四种。四管转换器就是全桥转换器。
非隔离式转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。
单管转换器共有六种,即降压式(Buck)转换器,升压式(Boost)转换器、升压降压式(BuckBoost)转换器、Cuk转换器、Zeta转换器和SEPIC转换器。在这六种单管转换器中,Buck和Boost式转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式转换器是从中派生出来的。双管转换器有双管串接的升压式(Buck-Boost)转换器。四管转换器常用的是全桥转换器(Full-BridgeConverter)。
隔离式转换器在实现输出与输入电气隔离时,通常采用变压器来实现,由于变压器具有变压的功能,所以有利于扩大转换器的输出应用范围,也便于实现不同电压的多路输出,或相同电压的多种输出。
在功率开关管的电压和电流定额相同时,转换器的输出功率通常与所用开关管的数量成正比。所以开关管数越多,转换器的输出功率越大,四管式比两管式输出功率大一倍,单管式输出功率只有四管式的。
非隔离式转换器与隔离式转换器的组合,可以得到单个转换器所不具备的一些特性。
按能量的传输来分,转换器有单向传输和双向传输两种。具有双向传输功能的转换器,既可以从电源侧向负载侧传输功率,也可以从负载侧向电源侧传输功率。
转换器也可以分为自激式和他控式。借助转换器本身的正反馈信号实现开关管自持周期性开关的转换器,叫做自激式转换器,如洛耶尔转换器就是一种典型的推挽自激式转换器。他控式转换器中的开关器件控制信号,是由外部专门的控制电路产生的。
开关电源基本组成
开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。
1、主电路
冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。
输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。
整流与滤波:将电网交流电源直接整流为较平滑的直流电。
逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。
输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
2、控制电路
一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。
3、检测电路
提供保护电路中正在运行中各种参数和各种仪表数据。
4、辅助电源
实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。
主要分类
人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类。
微型低功率开关电源
开关电源正在走向大众化,微型化。开关电源将逐步取代变压器在生活中的所有应用,低功率微型开关电源的应用要首先体现在,数显表、智能电表、手机充电器等方面。现阶段国家在大力推广智能电网建设,对电能表的要求大幅提高,开关电源将逐步取代变压器在电能表上面的应用。
反转式串联开关电源
反转式串联开关电源与一般串联式开关电源的区别是,这种反转式串联开关电源输出的电压是负电压,正好与一般串联式开关电源输出的正电压极性相反;并且由于储能电感L只在开关K关断时才向负载输出电流,因此,在相同条件下,反转式串联开关电源输出的电流比串联式开关电源输出的电流小一倍。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在优良领域的应用,推动了开关电源的发展前进,每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。另外,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET、变压器。
SCR在开关电源输入整流电路及软启动电路中有少量应用,GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。
开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。
由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。
模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。
电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。
开关电源工作条件
1、开关:电力电子器件工作在开关状态而不是线性状态
2、高频:电力电子器件工作在高频而不是接近工频的低频
3、直流:开关电源输出的是直流而不是交流
开关电源工作原理
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。
脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。后这些交流波形经过整流滤波后就得到直流输出电压。
控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。
开关电源主要特点
1、体积小、重量轻:由于没有工频变压器,所以体积和重量只有线性电源的20~30%。
2、功耗小、效率高:功率晶体管工作在开关状态,所以晶体管上的功耗小,转化效率高,一般为60~70%,而线性电电源只有30~40%。
工作模式
顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),
通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压
关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
根据开关器件在电路中连接的方式,开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。
开关电源使用指南
输出计算
因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应准确测量或计算用电设备的大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为:
Is=KIf
式中:Is—开关电源的额定输出电流;
If—用电设备的大吸收电流;
K—裕量系数,一般取1.5~1.8;
接地
开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000、EN61000、FCC等EMC限制,开关电源均采取EMC电磁兼容措施,因此开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列开关电源,将其FG端子接大地或接用户机壳,方能满足上述电磁兼容的要求。
保护电路
开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。
开关电源接线方法
L:接220v交流火线
N:接220v交流零线
FG:接大地
G:直流输出的地
+5v:输出+5V点的端口
ADJ:是在一定范围内调输出电压的,开关电源上输出的额定电压本来出厂时是固定的,也就是标称额定输出电压,设置此电位器可以让用户根据实际使用情况在一个较小的范围内调节输出电压,一般情况下是不需要调整它的。
开关电源维修步骤
1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,
如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。
2、步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的*条件。
3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC,参考电压输出端VR,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。
4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,
大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GEDR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM组件正常工作,输出电压均正常。
5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,
PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。
总之,开关电源电路有易有难,功率有大有小,输出电压多种多样。只要抓住其核心的东西,即充分熟悉开关电源的基本结构以及PFC及PWM模块的特性,它们工作的基本条件,按照上述步骤和方法,多动手进行开关电源的维修,就能迅速地排除开关电源故障,达到事半功倍的效果。